Raman enhancement factor of a single tunable nanoplasmonic resonator.

نویسندگان

  • Kai-Hung Su
  • Stéphane Durant
  • Jennifer M Steele
  • Yi Xiong
  • Cheng Sun
  • Xiang Zhang
چکیده

We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Raman scattering (SERS) active substrate. The ability to control the dimensions of the metallic and dielectric layers offers the unique advantage of fine-tuning the plasmon resonance frequency to maximize the enhancement of the Raman signal. Furthermore, by selective shielding of the outer surface of the metallic structure, the efficiency can be further enhanced by guiding the molecular assembly to the locations that exhibit strong electromagnetic fields. We experimentally demonstrate SERS enhancement factors of (6.1+/-0.3)x10(10), with the highest enhancement factor being achieved by using an individual nanoparticle. By using nanofabrication techniques, we eliminate the issues such as large size variations, cluster aggregation, and interparticle effects common in preparing SERS substrates using conventional chemical synthesis or batch fabrication methods. TNPRs produce very controllable and repeatable SERS signals at the desired locations and, thus, make an ideal candidate for device integration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of near-field Raman enhancement in one-dimensional systems.

We develop a theory of near-field Raman enhancement in one-dimensional systems, and report supporting experimental results for carbon nanotubes. The enhancement is established by a laser-irradiated nanoplasmonic structure acting as an optical antenna. The near-field Raman intensity is inversely proportional to the 10th power of the separation between the enhancing structure and the one-dimensio...

متن کامل

Monotonic Tuning of Plasmon Resonance Using Deformable Nanoplasmonic Membrane for Surface-enhanced Raman Scattering

Localized surface plasmon resonance (LSPR) is strongly associated with inelastic scattering of biochemical molecules near metal nanostructures, i.e., surface enhanced Raman scattering (SERS). Systematically exploration of the relationship between surface-enhanced Raman spectroscopy (SERS) and the plasmon resonance wavelength has been an experimental limitation due to the lack of reliable and tu...

متن کامل

Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring...

متن کامل

Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array.

Local extracellular signaling is central for cellular interactions and organizations. We report a novel sensing technique to interrogate extracellular signaling at the subcellular level. We developed an in situ immunoassay based on giant optical enhancement of a tunable nano-plasmonic-resonator array fabricated by nanoimprint lithography. Our nanoplasmonic device significantly increases the sig...

متن کامل

Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors.

Protease activity measurement has broad application in drug screening, diagnosis and disease staging, and molecular profiling. However, conventional immunopeptidemetric assays (IMPA) exhibit low fluorescence signal-to-noise ratios, preventing reliable measurements at lower concentrations in the clinically important picomolar to nanomolar range. Here, we demonstrated a highly sensitive measureme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 9  شماره 

صفحات  -

تاریخ انتشار 2006